a numerical investigation of γ-al2o3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger
Authors
abstract
the effect of γ-al2o3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-al2o3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. since the properties of γ-al2o3-water nanofluids were variable, they were defined using the user define function. the results revealed that heat transfer and pressure drop were increased with mass flow rate as well as baffle numbers. adding nanoparticles to the based fluid did not have a significant effect on pressure drop in the shell side. the best heat transfer performance of heat exchangers was for γ-al2o3-water 1 vol.% and higher nanoparticles concentration was not suitable. the suitable baffle spacing was 43.4% of the shell diameter, showing a good agreement with bell-delaware method.
similar resources
A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger
The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were ...
full textExperimental investigation on the heat transfer performance and pressure drop characteristics of γ-Al2O3/water nanofluid in a double tube counter flow heat exchanger
In this paper, overall heat transfer coefficient and friction factor of water based γ-Al2O3 nanofluid in a double tube counter flow heat exchanger have been measured experimentally under turbulent flow condition. For better dispersion of γ-Al2O3 nanoparticles in distilled water, magnetic stirrer and ultrasonic vibrator (with a power of 240 kW and frequency of 35 kHz) were implemented. The stabi...
full textnumerical investigation of heat transfer and pressure drop in a plate heat exchanger with chevron plates
in the present study, turbulent flow in channels of a plate heat exchanger with corrugated chevron plates has been simulated numerically using the commercial cfd package, fluent. unstructured mesh is used for discretizing the computational domain and simple algorithm is utilized to solve the pressure and velocity equations. there is a wide selection of different plate heat exchangers within the...
full textexperimental investigation on the heat transfer performance and pressure drop characteristics of γ-al2o3/water nanofluid in a double tube counter flow heat exchanger
in this paper, overall heat transfer coefficient and friction factor of water based γ-al2o3 nanofluid in a double tube counter flow heat exchanger have been measured experimentally under turbulent flow condition. for better dispersion of γ-al2o3 nanoparticles in distilled water, magnetic stirrer and ultrasonic vibrator (with a power of 240 kw and frequency of 35 khz) were implemented. the stabi...
full textExperimental investigation on heat transfer and pressure drop of Al2O3-base oil nanofluid in a helically coiled tube and effect of turbulator on the thermal performance of shell and tube heat exchanger
These days With respect to the high importance of energy concept, limitation of natural resources, regulation of environmental issues, and global warming, heat transfer systemschr(chr('39')39chr('39')) applications get more attention. In the present paper, the experimental effect of Nano-fluid and turbulator on the heat transfer and pressure drop is investigated. AL2O3-SN300 base oil as nanoflu...
full textEffect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel
The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...
full textMy Resources
Save resource for easier access later
Journal title:
transport phenomena in nano and micro scalesPublisher: university of sistan and baluchestan, iranian society of mechanical engineers
ISSN 2322-3634
volume 4
issue 1 2016
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023